The Numerical Range of Toeplitz Operator on the Polydisk

نویسندگان

  • Dinggui Gu
  • Stevo Stević
چکیده

and Applied Analysis 3 It is obvious that ka ∈ A2 D and 〈ka, ka〉 ∫

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Properties of Toeplitz Operators on the Polydisk

and Applied Analysis 3 For commuting problem, in 1963, Brown and Halmos 2 showed that two bounded Toeplitz operators Tφ and Tψ on the classical Hardy space commute if and only if i both φ and ψ are analytic, ii both φ and ψ are analytic, or iii one is a linear function of the other. On the Bergman space of the unit disk, some similar results were obtained for Toeplitz operators with bounded har...

متن کامل

On the decomposable numerical range of operators

 ‎Let $V$ be an $n$-dimensional complex inner product space‎. ‎Suppose‎ ‎$H$ is a subgroup of the symmetric group of degree $m$‎, ‎and‎ ‎$chi‎ :‎Hrightarrow mathbb{C} $ is an irreducible character (not‎ ‎necessarily linear)‎. ‎Denote by $V_{chi}(H)$ the symmetry class‎ ‎of tensors associated with $H$ and $chi$‎. ‎Let $K(T)in‎ (V_{chi}(H))$ be the operator induced by $Tin‎ ‎text{End}(V)$‎. ‎Th...

متن کامل

Notes on the Numerical Range

This is an introduction to the notion of numerical range for bounded linear operators on Hilbert space. The main results are: determination of the numerical range for two by two matrices, the Toeplitz-Hausdorff Theorem establishing the convexity of the numerical range for any Hilbert space operator, and a detailed discussion of the relationship between the numerical range and the spectrum. The ...

متن کامل

Compact Hankel Operators on the Hardy Space of the Polydisk

We show that a big Hankel operator on the standard Hardy space of the polydisk D, n > 1, cannot be compact unless it is the zero operator. We also show that this result can be generalized to certain Hankel operators defined on Hardy-Sobolev spaces of the polydisk.

متن کامل

Weighted slant Toep-Hank Operators

A $it{weighted~slant~Toep}$-$it{Hank}$ operator $L_{phi}^{beta}$ with symbol $phiin L^{infty}(beta)$ is an operator on $L^2(beta)$ whose representing matrix consists of all even (odd) columns from a weighted slant Hankel (slant weighted Toeplitz) matrix, $beta={beta_n}_{nin mathbb{Z}}$ be a sequence of positive numbers with $beta_0=1$. A matrix characterization for an operator to be $it{weighte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009